

SNS LINAC DIAGNOSTICS & CHOPPER

Robert Hardekopf

Linac Systems R&D Manager

November 1, 2000

Beam Position Monitor Developed for DTL Drift-Tube Insertion

- Will allow precise beam steering through DTL
- Demanding application of BPM technology.
- 60° strip-line electrodes are flush with drift-tube ID.
- Signal from electrodes is taken out through outer cover and drift tube stem.

SNS Linac Los Alamos

Precise Fabrication and Assembly Required for BPM in Drift Tube

- BPM unit is installed during drift-tube fabrication.
- Signal cables are connected prior to welding of end caps.
- Alignment pins ensure orientation of the BPM.
- The assembly is mapped using a taut-wire measurement.

Design of Diagnostic Plate for DTL Commissioning is Underway

SPALLATION REVIEWS SOURCE

- The instrumentation is geared toward measurement of:
 - Transmission
 - Acceptance
 - Phase and energy
 - Transverse profile
 - Transverse emittance
- Physics studies have been made of the expanding beam.
- Diagnostics designs are progressing.
- A 13-kW beam stop will handle full beam power after DTL tank 1.

SNS Linac Los Alamos

The DTL Tank-1 Diagnostic Plate is in Preliminary Design

SNS Linac

MEBT Chopper With FET Pulser Will Achieve 10-ns Risetime

Chopper requirements:

Beam energy	2.5 Me V
Chopper length	35 cm
Chopper gap	1.8 cm
Voltage	± 2.35 kV
Deflection angle	18 mrad
Chopping period	945 ns
Rise &fall time	< 10 ns

Prototype pulser order placed

- Based on POP tested in Jan. 2000
- Positive & negative, ± 2.5 kV
- Series FETs, < 10 ns
- Delivery in March 2001

Fast Chopper in MEBT Uses New Meander-Line Structure

- Design based on notched stripline with dielectric supports and separators.
- Layout optimized with 3-D electromagnetic code MAFIA.
- Prototype measurements agree with 3-D time-domain simulations.
- Structure rise and fall times are 1 to 1.5 ns.
- Phase velocity along beam path matches MEBT velocity (b = 0.073)

